Although there is an extensive range of metal-metal-bonded alkoxides, there are none reported with ortho-substituted aryl oxides. This prevents a precise comparison of the effect of changing oxygen to sulfur on the observed chemistry. However, complex I does not react with CO at room temperature in contrast to species such as $[Mo_2(O-i-Pr)_6]$, which forms a series of carbonyl complexes.^{2a,b}

The electrochemistry **of** complex I was studied by cyclic voltammetry in thf solution with $[n-Bu_4N][BF_4]$ as supporting electrolyte and a platinum working electrode. The complex undergoes a one-electron reversible reduction at $E_{1/2} = -0.88$ V (vs. SCE calibrated vs. the ferrocene/ferrocenium couple at $+0.54$ V) followed by a further irreversible one-electron reduction at E_n $= -1.72$ V. The second irreversible reduction was accompanied by thiolate anion loss. Although CO does not react with the unreduced dimer, under CO the second reduction process becomes a two-electron process due to interaction with CO. However, there was no indication of interaction with N_2 at any redox level. No oxidation waves were observed at potentials up to $+1.2$ V.

Acknowledgment. We thank Dr. C. J. Pickett for performing the cyclic voltammetric measurements and the NIH for the award of a grant to J.Z.

Registry No. I, 97352-51-7; I (salt entry), 97352-52-8; [Mo₂- $SC_6H_2Me_3$ ₆], 86350-27-8; $[Mo_2(SC_6H_2Me_3)_6]$ (salt entry), 97069-07-3; $MoCl₄, 13320-71-3; [Ph₄P][MoO(SC₆H₂-i-Pr₃)₄], 97352-54-0; Mo,$ 7439-98-7.

Supplementary Material Available: Tables of observed and calculated structure factors, bond lengths and angles, anisotropic thermal parameters, and hydrogen atom positions (36 pages). Ordering information is given on any current masthead page.

Convenient Synthesis of *trans* **-Diacidotetraamminerutbenium(111) Complexes**

Chi-Ming Che,* Mehe Jamal, Chung-Kwong Poon,* and Wai-Cheung Chung

Received December 18, 1984

The chemistry of trans ruthenium(I1) and ruthenium(II1) tetraammine complexes has been the subject of extensive research over the past decade.¹ However, the reported synthesis² of trans-[Ru(NH₃)₄Cl₂]Cl, a key starting material in ruthenium ammine chemistry, was rather inefficient and inconvenient, involving several steps. We have recently found that high-valent ruthenium(V1) amine oxo complexes could easily be converted into the corresponding ruthenium (IV) and ruthenium (III) species.³ Here an efficient synthetic procedure for trans- [Ru(NH₃)₄X₂] + $(X = Cl, I, NCS)$ utilizing trans- $Ru(NH₃)₄O₂]$ ²⁺ as the starting material **is** described.

Experiment Section

Materials. Ruthenium(II1) chloride trihydrate (Aldrich) was used as supplied. trans- $Ru(NH_3)_4O_2]Cl_2$ was prepared according to the literature method.⁴ All chemicals used were of reagent grade, and deionized water was used throughout the experiment.

 $trans$ -[Ru(NH₃)₄Cl₂]Cl. A mixture of trans-[Ru(NH₃)₄O₂]Cl₂ (0.2) g) and ascorbic acid $(2 g)$ in HCl $(2 M, 15 cm³)$ was stirred for 1 day. An orange microcrystalline solid gradually deposited upon standing (yield

(3) Che, C. M.; Wong, K. Y.; Poon, C. **K.,** to be submitted for publication. **(4)** Griffith, W. P.; Pawson, D. J. *Chem. SOC., Dalton Trans.* **1973,** *1315.*

Table I. UV-Vis Absorption Spectra of Some **trans-Diacidotetraammineruthenium(II1)** Complexes

complex	solvent	λ_{max}/nm $(\epsilon_{\text{max}}/\text{cm}^{-1} \text{ dm}^3 \text{ mol}^{-1})^a$
trans- Ru(NH_3)_4Cl_2Cl	HCl (1 M)	331 $(5270)^b$
trans- $\text{Ru(NH_3)_4Br_2\text{Br}}$	HBr (0.1 M)	399 $(5133)^b$
trans- $\left[\text{Ru(NH_3)_4(NCS)_2}\right]$ NCS	H,O	524 (12 600), 430 sh $(1410), 330$ br (770)
trans- Ru(NH_1)_4I_2	$_{\rm H, O}$	552 (5800), 425 sh (1190), 304 (12100)

"Abbreviations: br, broad; sh, shoulder. b Isabirye, D. A. Ph.D. Thesis, University of Hong Kong, 1977.

>60%). The purity of the complex was checked by comparing its molar extinction coefficient at 331 nm with the known value. Alternatively, $SnCl₂$ or 2-propanol could be used instead of ascorbic acid.

trans-[Ru(NH₃)₄I₃][. An aqueous solution (20 cm³) of trans-[Ru- $(NH₃)₄O₂$]Cl₂ (0.1 g), ascorbic acid (2 g), and NaI (2 g) was stirred for 2 h. A dark violet-blue microcrystalline solid gradually deposited. This was filtered off and purified from a hot (\sim 70 °C) NaI solution (1 M) (overall yield $>70\%$). Anal. Calcd for $[Ru(NH₃)₄I₂]I: N, 10.17; I,$ 69.20. Found: N, 10.27; I, 68.90. IR: u(NH) 3240, 3200, 3130 cm-I; $\delta(NH)$ 1620 cm⁻¹.

 $\{$ rans- $\{Ru(NH_3)_{4}(NCS)\}$]NCS. An aqueous solution (20 cm³) of *trans*-[Ru(NH₃)₄O₂]Cl₂ (0.1 g), ascorbic acid (2 g), and NaNCS (2 g) was stirred for 2-3 h. A dark violet-red solid gradually precipitated out. This was filtered off, washed with an ethanol-diethyl ether mixture (1:10), and dried under vacuum. Anal. Calcd for Ru(NH)_4 . (NCS)2]NCS: C, 10.50; H, 3.49; N, 28.56; S, 28.0. Found: C, 10.37; H, 3.33; N, 28.14; S, 28.4. IR: $\nu(NH)$ 3240, 3200, 3130 cm⁻¹; $\nu(C=$ N) 2060 cm⁻¹; δ(NH) 1620 cm⁻¹, δ(NCS) 790 cm⁻¹.

Physical Measurements. Elemental analyses of the newly prepared compounds were performed by the Australian Microanalytical Service Unit. Infrared spectra were measured in Nujol mulls on a Perkin-Elmer 577 spectrophotometer (4000-200 cm⁻¹). Electronic absorption spectra of freshly prepared solutions were measured with a Beckman Acta CIII spectrophotometer and the results were tabulated in Table I.

Results and Discussion

Previous work of Taube and his co-workers⁵ has shown that reduction of trans- $[Os(NH₃)₄O₂]Cl₂$ by SnCl₂ in HCl (6 M) produced trans- $[Os(NH₃)₄Cl₂]⁺$. This synthetic method has been found to be more efficient for the general synthesis of trans- $[Ru(NH₃)₄X₂]$ ⁺ (X = Cl, I, NCS). Other mild reductants, such as ascorbic acid and 2-propanol, can also very efficiently reduce *trans*-[Ru(NH₃)₄O₂]²⁺, as it is a better oxidant than *trans*-[Os- $(NH_3)_4O_2]^{2+}.$

The complex *trans*-[Ru(NH₃)₄Cl₂ prepared here is identical with that reported in the literature. The newly prepared $trans-[Ru(NH₃)₄I₂]$ I and *trans*-[Ru(NH₃)₄(NCS)₂]NCS complexes are stable in the solid state and in acidic solutions. The similarities of their UV-vis absorption spectra with those of the reported trans- $[Ru(en)_2X_2]^{+6}$ (X = I, NCS) support the assignment of a trans configuration. **As** expected, the ligand-to-metal charge-transfer energy of trans- $[Ru(NH₃)₄X₂]$ ⁺ decreases in the order of $X = Cl > Br > NCS > I$ (see Table I). trans-[Ru- $(NH₃)₄(NCS)₂]NCS$ has also been characterized by its IR absorption bands at 2060 and 790 cm⁻¹ assignable to $\nu(CN)$ and $\nu(\overrightarrow{CS})$, respectively.⁷ It is difficult to ascertain whether it is an N- or S-bonded thiocyanate species. Preliminary redox kinetic work showed that this species is a good mediator for electrontransfer reactions, s a full account of which will be reported.

- *(5)* Buhr, J. D.; Winkler, J. R.; Taube, H. *Inorg. Chem.* **1980,** *19,* 2416.
- (6) Poon, C. K.; Lau, T. C.; Che, C. M. *Inorg. Chem.* **1983,** *22,* 3893.

(8) Che, C. M., unpublished results.

⁽¹⁾ *See,* for example: *Prog. Inorg. Chem.* **1983,** *30.* **(2)** Glen, K.; Bruel, W. *2. Anorg. Allg. Chem.* **1938,** *237,* 197.

⁽⁷⁾ Nakamoto, K. "Infrared and Raman Spectra of Inorganic and Coordination Compounds", 3rd *ed.;* Wiley: New York, 1978.

Acknowledgment. We thank the Committee on Research and Conference Grants of the University of Hong **Kong** for financial support.

Registry No. trans-[$Ru(NH_3)_4Cl_2$]Cl, 63251-19-4; trans-[Ru -(NH₃)₄I₂]I, 97134-68-4; *trans*-[Ru(NH₃)₄(NCS)₂]NCS, 97134-70-8; $trans-[Ru(NH_3)_4O_2]Cl_2$, 38882-90-5.

> Contribution from the Department of Chemistry, University of Mar del Plata, *7600* Mar del Plata, Argentina, and Rocketdyne, A Division of Rockwell International, Canoga Park, California 91 304

Extended Correlation between 0-F Bond Energies and 19F NMR Chemical Shifts in Fluoroxy Compounds

E. Ghibaudi,[†] A. J. Colussi,^{*†} and Karl O. Christe^{*†}

Received October 2, I984

Bond energies $D_{\text{RO-F}}$ and ¹⁹F NMR chemical shifts ϕ markedly depend on the nature of the R group in fluoroxy compounds. It has been shown¹ recently that the direct correlation between $D_{\text{RO-F}}$ and ϕ , which is nearly linear over a wide (13 kcal/mol; 100 ppm) range, (1) may be taken as evidence of three-center bonding² in these species, **(2)** is consistent with changes in the electron population of the π *-SOMO of OF, and (3) reveals the shortcomings of semiquantitative theories of paramagnetic shielding for the fluorine nucleus.³

We wish to report now that an extended set of data, including an experimental measurement of ϕ in NO₂OF ($\phi = 220$)⁴ together with existing values for F_2O_2 ($D_{O-F} = 18$ kcal/mol; $\phi = 825$)⁵ and FOH (54 kcal/mol; 21 ppm), $5a,6$ confirms the above conclusions but requires an improved correlation to account for the extremely large spans of both parameters. **A** nonlinear leastsquares fit⁷ of the S-shaped *D* vs. ϕ plot (Figure 1) leads to the expression

$$
D = 37.1 + 18.1 \tanh [(222.7 - \phi)/117.5] \tag{1}
$$

This correlation provides a useful predictor of the 0-F bond energies of fluoroxy compounds from readily accessible spectroscopic data.⁸ It also represents a critical test of ab initio calculations of magnetic shielding constants for heavy nuclei.¹⁰

'University of Mar del Plata.

* Rocketdyne, A Division of Rockwell International.

- (1) Ghibaudi, E.; Colussi, A. J. *Inorg. Chem.* **1984,** *23,* 635.
- (2) Spratley, R. D.; Pimentel, G. D. J. Am. *Chem. SOC.* **1966,** *88,* 2394.
- (3) Saika, A.; Slichter, C. P. J. *Chem. Phys.* **1954,** *22, 26.*
- (4) Determined for neat liquid NO₂OF at 84.6 MHz using CFCI₃ as ex-
ternal standard. The measured shift increased from 218.7 ppm at -95
^oC to 219.6 ppm at -45 ^oC. Positive shifts are downfield from CFCI₃.
- *(5)* (a) 'JANAF Thermochemical Tables", 2nd ed.; US. Department of Commerce: Washington, D.C., 1971 (and supplements). (b) Nikitin, I. **V.;** Rosolovskii, W. Ya. *Russ. Chem. Reo. (Engf. Transl.)* **1971,** *40,* 889.
- (6) Hindman, J. C.; Svirmickas, A,; Appelman, E. H. J. *Chem. Phys.* **1972,** *57,* 4542.
- (7) Bevington, P. R. 'Data Reduction and Error Analysis for the Physical Sciences"; McGraw-Hill: New York, 1969; p 237.

Figure 1. (a) Spectroscopic dissociation energies D_{O-F} vs. ¹⁹F NMR chemical shifts ϕ for fluoroxy compounds. (b) $D_{\text{O-F}}$ vs. X, where X is tanh $[(222.7 - \phi)/117.5]$. The parameters have been determined by using the Marquardt algorithm.'

Acknowledgment. K.O.C. is grateful to the Office of Naval Research for financial support.

Registry No. N020F, 7789-26-6.

⁽⁸⁾ Thus for example, from experimental observations9 and an assumption that the marginally stable $SF₅OOF$ decomposes by $SF₅OOF = SF₅OO$. + F (k_1) , followed by the fast reactions SF₅OO. = SF_S. + O₂ and SF_S. $+ F = SF_6$, we predict from the expression¹ log $[k_1 (s^{-1})] \sim 15.3 - E/(10^{-3} 4.575 T)$ a value for *D* of about 22 kcal/mol, in good agreement with the one derived from eq. 1 for $\phi = 330$. Obviously, overall rates of gas-phase chain reactions or heterogeneous decompositions are partially controlled by D values. The relatively large errors $(\pm 1 \text{ kcal/mol})$ and probably larger in the case of F_2O_2) usually associated with *D* values would normally preclude **using** any such correlation to estimate NMR chemical shifts with a precision comparable to those attained by direct measurement. Notice, however, that ϕ in F₂O₂ changes by about 40 ppm from neat liquid to infinite dilution.^{5b}
(9) DesMarteau, D. D.; Hammaker, R. M. *Isr. J. Chem.* **1978**, *17*, 103.

⁽IO) (a) Iwai, M.; Saika, A. J. *Chem. Phys.* **1982,** *77,* 1951. (b) Garg, *S.* K.; Tse, J. *S. Chem. Phys. Lett.* **1982,** *92,* 150. (c) For substituent effects **on** I3C NMR chemical shifts, see: Craik, D. J.; Brownless, R. T. *C. Prog. Phys. Org. Chem.* **1983,** *14,* 1.